How do low-energy (0.1-2 eV) electrons cause DNA-strand breaks?

نویسنده

  • Jack Simons
چکیده

We overview our recent theoretical predictions and the innovative experimental findings that inspired us concerning the mechanisms by which very low-energy (0.1-2 eV) free electrons attach to DNA and cause strong (ca. 4 eV) covalent bonds to break causing so-called single-strand breaks. Our primary conclusions are that (i) attachment of electrons in the above energy range to base pi* orbitals is more likely than attachment elsewhere and (ii) attachment to base pi* orbitals most likely results in cleavage of sugar-phosphate C-O sigma bonds. Later experimental findings that confirmed our predictions about the nature of the electron attachment event and about which bonds break when strand breaks form are also discussed. The proposed mechanism of strand break formation by low-energy electrons involves an interesting through-bond electron-transfer process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement of DNA damage by electrons with energies between 25 and 4000 eV.

All ionizing radiations deposit energy stochastically along their tracks. The resulting distribution of energies deposited in a small target such as the DNA helix leads to a corresponding spectrum in the severity of damage produced. So far, most information about the probable spectra of DNA lesion complexity has come from Monte Carlo studies which endeavour to model the relationship between the...

متن کامل

The study of dose gamma rays of 192Ir source on DNA single strand break (SSB) and DNA double strand break (DSB) in soft tissue phantom

Introduction: Passage of ionizing radiation through the organs of living creatures develops clusters of damaged nucleotides inside the DNA rounds. 192Ir Gamma source is one of the most widely used sources in brachytherapy of cervical and prostate cancer. Thus, in this research, we investigated the flux of photons and its resulting secondary electrons, the single-strand break (S...

متن کامل

Density functional theory studies of electron interaction with DNA: can zero eV electrons induce strand breaks?

The discovery of DNA strand breaks induced by low energy secondary electrons sparks a necessity to elucidate the mechanism. Through theoretical studies based on a sugar-phosphate-sugar model that mimics a backbone section of the DNA strand, it is found that bond cleavages at 3' or 5'C-O sites after addition of an electron are possible with a ca. 10 kcal/mol activation barrier. Moreover, the pot...

متن کامل

Damage to model DNA fragments from very low-energy (<1 eV) electrons.

Although electrons having enough energy to ionize or electronically excite DNA have long been known to cause strand breaks (i.e., bond cleavages), only recently has it been suggested that even lower-energy electrons (most recently 1 eV and below) can also damage DNA. The findings of the present work suggest that, while DNA bases can attach electrons having kinetic energies in the 1 eV range and...

متن کامل

Dissociative electron attachment to phosphoric acid esters: the direct mechanism for single strand breaks in DNA.

We use dibutyl phosphate to simulate the behavior of the phosphate group in DNA towards the attack of low energy electrons. We find that the compound undergoes effective dissociative electron attachment within a low energy resonant feature at 1 eV and a further resonance peaking at 8 eV. The dissociative electron attachment (DEA) reactions are associated with the direct cleavage of the C-O and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Accounts of chemical research

دوره 39 10  شماره 

صفحات  -

تاریخ انتشار 2006